HTTP1.0、HTTP1.1和HTTP2.0的区别

一、HTTP的历史

早在HTTP建立之初,主要就是为了将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器。也是说对于前端来说,我们所写的HTML页面将要放在我们的web服务器上,用户端通过浏览器访问url地址来获取网页的显示内容,但是到了WEB2.0以来,我们的页面变得复杂,不仅仅单纯的是一些简单的文字和图片,同时我们的HTML页面有了CSS,Javascript,来丰富我们的页面展示,当ajax的出现,我们又多了一种向服务器端获取数据的方法,这些其实都是基于HTTP协议的。同样到了移动互联网时代,我们页面可以跑在手机端浏览器里面,但是和PC相比,手机端的网络情况更加复杂,这使得我们开始了不得不对HTTP进行深入理解并不断优化过程中。

二、HTTP的基本优化

影响一个HTTP网络请求的因素主要有两个:带宽和延迟。

  • 带宽:如果说我们还停留在拨号上网的阶段,带宽可能会成为一个比较严重影响请求的问题,但是现在网络基础建设已经使得带宽得到极大的提升,我们不再会担心由带宽而影响网速,那么就只剩下延迟了。

  • 延迟:

  • 浏览器阻塞(HOL blocking):浏览器会因为一些原因阻塞请求。浏览器对于同一个域名,同时只能有 4 个连接(这个根据浏览器内核不同可能会有所差异),超过浏览器最大连接数限制,后续请求就会被阻塞。

  • DNS 查询(DNS Lookup):浏览器需要知道目标服务器的 IP 才能建立连接。将域名解析为 IP 的这个系统就是 DNS。这个通常可以利用DNS缓存结果来达到减少这个时间的目的。

  • 建立连接(Initial connection):HTTP 是基于 TCP 协议的,浏览器最快也要在第三次握手时才能捎带 HTTP 请求报文,达到真正的建立连接,但是这些连接无法复用会导致每次请求都经历三次握手和慢启动。三次握手在高延迟的场景下影响较明显,慢启动则对文件类大请求影响较大。

三、HTTP1.0和HTTP1.1的一些区别

HTTP1.0最早在网页中使用是在1996年,那个时候只是使用一些较为简单的网页上和网络请求上,而HTTP1.1则在1999年才开始广泛应用于现在的各大浏览器网络请求中,同时HTTP1.1也是当前使用最为广泛的HTTP协议。
主要区别主要体现在:

  1. ** 缓存处理**,在HTTP1.0中主要使用header里的If-Modified-Since,Expires来做为缓存判断的标准,HTTP1.1则引入了更多的缓存控制策略例如Entity tag,If-Unmodified-Since, If-Match, If-None-Match等更多可供选择的缓存头来控制缓存策略。

  2. 带宽优化及网络连接的使用,HTTP1.0中,存在一些浪费带宽的现象,例如客户端只是需要某个对象的一部分,而服务器却将整个对象送过来了,并且不支持断点续传功能,HTTP1.1则在请求头引入了range头域,它允许只请求资源的某个部分,即返回码是206(Partial Content),这样就方便了开发者自由的选择以便于充分利用带宽和连接。

  3. 错误通知的管理,在HTTP1.1中新增了24个错误状态响应码,如409(Conflict)表示请求的资源与资源的当前状态发生冲突;410(Gone)表示服务器上的某个资源被永久性的删除。

  4. Host头处理,在HTTP1.0中认为每台服务器都绑定一个唯一的IP地址,因此,请求消息中的URL并没有传递主机名(hostname)。但随着虚拟主机技术的发展,在一台物理服务器上可以存在多个虚拟主机(Multi-homed Web Servers),并且它们共享一个IP地址。HTTP1.1的请求消息和响应消息都应支持Host头域,且请求消息中如果没有Host头域会报告一个错误(400 Bad Request)。

  5. 长连接,HTTP 1.1支持长连接(PersistentConnection)和请求的流水线(Pipelining)处理,在一个TCP连接上可以传送多个HTTP请求和响应,减少了建立和关闭连接的消耗和延迟,在HTTP1.1中默认开启Connection: keep-alive,一定程度上弥补了HTTP1.0每次请求都要创建连接的缺点。

四、HTTPS与HTTP的一些区别

  1. HTTPS协议需要到CA申请证书,一般免费证书很少,需要交费。

  2. HTTP协议运行在TCP之上,所有传输的内容都是明文,HTTPS运行在SSL/TLS之上,SSL/TLS运行在TCP之上,所有传输的内容都经过加密的。

  3. HTTP和HTTPS使用的是完全不同的连接方式,用的端口也不一样,前者是80,后者是443。

  4. HTTPS可以有效的防止运营商劫持,解决了防劫持的一个大问题。

五、SPDY:HTTP1.x的优化

2012年google如一声惊雷提出了SPDY的方案,优化了HTTP1.X的请求延迟,解决了HTTP1.X的安全性,具体如下:

  1. 降低延迟,针对HTTP高延迟的问题,SPDY优雅的采取了多路复用(multiplexing)。多路复用通过多个请求stream共享一个tcp连接的方式,解决了HOL blocking的问题,降低了延迟同时提高了带宽的利用率。

  2. 请求优先级(request prioritization)。多路复用带来一个新的问题是,在连接共享的基础之上有可能会导致关键请求被阻塞。SPDY允许给每个request设置优先级,这样重要的请求就会优先得到响应。比如浏览器加载首页,首页的html内容应该优先展示,之后才是各种静态资源文件,脚本文件等加载,这样可以保证用户能第一时间看到网页内容。

  3. header压缩。前面提到HTTP1.x的header很多时候都是重复多余的。选择合适的压缩算法可以减小包的大小和数量。

  4. 基于HTTPS的加密协议传输,大大提高了传输数据的可靠性。

  5. 服务端推送(server push),采用了SPDY的网页,例如我的网页有一个sytle.css的请求,在客户端收到sytle.css数据的同时,服务端会将sytle.js的文件推送给客户端,当客户端再次尝试获取sytle.js时就可以直接从缓存中获取到,不用再发请求了。SPDY构成图:

SPDY位于HTTP之下,TCP和SSL之上,这样可以轻松兼容老版本的HTTP协议(将HTTP1.x的内容封装成一种新的frame格式),同时可以使用已有的SSL功能。

六、HTTP2.0性能惊人

HTTP/2: the Future of the
Internet

是 Akamai 公司建立的一个官方的演示,用以说明 HTTP/2 相比于之前的 HTTP/1.1 在性能上的大幅度提升。 同时请求 379
张图片,从Load time 的对比可以看出 HTTP/2 在速度上的优势。

七、HTTP2.0:SPDY的升级版

HTTP2.0可以说是SPDY的升级版(其实原本也是基于SPDY设计的),但是,HTTP2.0 跟 SPDY 仍有不同的地方,如下:

HTTP2.0和SPDY的区别:

  1. HTTP2.0 支持明文 HTTP 传输,而 SPDY 强制使用 HTTPS

  2. HTTP2.0 消息头的压缩算法采用 HPACK,而非 SPDY 采用的 DEFLATE

八、HTTP2.0和HTTP1.X相比的新特性

  1. 新的二进制格式(Binary Format),HTTP1.x的解析是基于文本。基于文本协议的格式解析存在天然缺陷,文本的表现形式有多样性,要做到健壮性考虑的场景必然很多,二进制则不同,只认0和1的组合。基于这种考虑HTTP2.0的协议解析决定采用二进制格式,实现方便且健壮。

  2. 多路复用(MultiPlexing),即连接共享,即每一个request都是是用作连接共享机制的。一个request对应一个id,这样一个连接上可以有多个request,每个连接的request可以随机的混杂在一起,接收方可以根据request的 id将request再归属到各自不同的服务端请求里面。

  3. header压缩,如上文中所言,对前面提到过HTTP1.x的header带有大量信息,而且每次都要重复发送,HTTP2.0使用encoder来减少需要传输的header大小,通讯双方各自cache一份header fields表,既避免了重复header的传输,又减小了需要传输的大小。

  4. 服务端推送(server push),同SPDY一样,HTTP2.0也具有server push功能。

九、HTTP2.0的升级改造

  1. 前文说了HTTP2.0其实可以支持非HTTPS的,但是现在主流的浏览器像chrome,firefox表示还是只支持基于 TLS 部署的HTTP2.0协议,所以要想升级成HTTP2.0还是先升级HTTPS为好。

  2. 当你的网站已经升级HTTPS之后,那么升级HTTP2.0就简单很多,如果你使用NGINX,只要在配置文件中启动相应的协议就可以了,可以参考NGINX白皮书NGINX配置HTTP2.0官方指南

  3. 使用了HTTP2.0那么,原本的HTTP1.x怎么办,这个问题其实不用担心,HTTP2.0完全兼容HTTP1.x的语义,对于不支持HTTP2.0的浏览器,NGINX会自动向下兼容的。

十、附注

HTTP2.0的多路复用和HTTP1.X中的长连接复用有什么区别?

  • HTTP/1.* 一次请求-响应,建立一个连接,用完关闭;每一个请求都要建立一个连接;

  • HTTP/1.1 Pipeling解决方式为,若干个请求排队串行化单线程处理,后面的请求等待前面请求的返回才能获得执行机会,一旦有某请求超时等,后续请求只能被阻塞,毫无办法,也就是人们常说的线头阻塞;

  • HTTP/2多个请求可同时在一个连接上并行执行。某个请求任务耗时严重,不会影响到其它连接的正常执行;

具体如图:

服务器推送到底是什么?

服务端推送能把客户端所需要的资源伴随着index.html一起发送到客户端,省去了客户端重复请求的步骤。正因为没有发起请求,建立连接等操作,所以静态资源通过服务端推送的方式可以极大地提升速度。具体如下:

  • 普通的客户端请求过程:

  • 服务端推送的过程:

为什么需要头部压缩?

假定一个页面有100个资源需要加载(这个数量对于今天的Web而言还是挺保守的),
而每一次请求都有1kb的消息头(这同样也并不少见,因为Cookie和引用等东西的存在),
则至少需要多消耗100kb来获取这些消息头。HTTP2.0可以维护一个字典,差量更新HTTP头部,大大降低因头部传输产生的流量。具体参考:[HTTP/2
头部压缩技术介绍](https://link.jianshu.com/?t=https://imququ.com/post/header-
compression-in-http2.html)

HTTP2.0多路复用有多好?

HTTP 性能优化的关键并不在于高带宽,而是低延迟。TCP
连接会随着时间进行自我「调谐」,起初会限制连接的最大速度,如果数据成功传输,会随着时间的推移提高传输的速度。这种调谐则被称为 TCP
慢启动。由于这种原因,让原本就具有突发性和短时性的 HTTP 连接变的十分低效。

HTTP/2 通过让所有数据流共用同一个连接,可以更有效地使用 TCP 连接,让高带宽也能真正的服务于 HTTP 的性能提升。

十一、参考

HTTP/2.0
相比1.0有哪些重大改进?

深入研究:HTTP2
的真正性能到底如何

[HTTP/2 头部压缩技术介绍](https://link.jianshu.com/?t=https://imququ.com/post/header-
compression-in-http2.html)

再好好聊一聊 HTTP 中的 Cookie 细节 | 实用 HTTP

一、序

Hi,大家好,我是承香墨影!

HTTP 协议在网络知识中占据了重要的地位,HTTP 协议最基础的就是请求和响应的报文,而报文又是由报文头(Header)和实体组成。大多数 HTTP
协议的使用方式,都是依赖设置不同的 HTTP 请求/响应 的 Header 来实现的。

本系列《实用 HTTP》就抛开常规的 Header 讲解式的表述方式,从实际问题出发,来分析这些 HTTP
协议的使用方式,到底是为了解决什么问题?同时讲解它是如何设计的和它实现原理。

HTTP
协议是一种无状态的“松散协议”,它不会记录不同请求的状态,并且因为它本身包含了两端(客户端和服务端),根据请求和响应来区分,它大部分的内容都只是一个建议,其实双边是可以不遵守此建议的。

“这里写了建议零售价 2 元…”

“哦,不接受建议!”

文本是本系列的第四篇,前三篇传送门:

本身 HTTP 就是一个无状态的协议,但是有时候我们又有需要增加状态的需求,这个时候延伸出来了 Cookie,利用 Cookie
可以让传输的时候保持一些状态信息。

本文就来讲讲 Cookie 的所有细节。

二、Cookie的使用

2.1 什么是 Cookie?

先明确一点,Cookie 就是为了解决 HTTP 协议无状态的问题,接下来举个例子说明。

早年间医院对患者的病例还没有在线建档的时候,都需要患者在就医之前,办理一个病历的小册子,医生会在病历中写上此次就医的情况,什么时间、有什么表现的反映、诊断是什么病、开了一些什么药等等。如果下次又生病了,有病历的情况下,都会要求患者再把病历带上,这样医生就能通过病历了解到之前的情况。

在 Cookie 的实现上,也是这样的。

服务端(医生)在收到客户端(患者)请求的时候,将一些用户标识信息加入到 Cookie (病例)中,随着响应返回给客户端,客户端将 Cookie
中的信息存储在本地,下次再请求此服务器的时候,再将 Cookie 中携带的数据原样传输给服务端,此时服务端就能通过 Cookie
中的用户标识,识别出这是之前请求过的某个用户。

在这个例子中,服务端就是医生的角色、客户端是患者的角色、Cookie 就是病历。

Netscape 官方文档中的定义为:Cookie 是指在 HTTP 协议下,服务器或脚本可以维护客户端计算机上信息的一种方式 。通俗地说,Cookie
是一种能够让网站 Web 服务器把少量数据储存到客户端的硬盘或内存里,或是从客户端的硬盘里读取数据的一种技术。 Cookie 文件则是指在浏览某个网站时,由
Web 服务器的 CGI 脚本创建的存储在浏览器客户端计算机上的一个小文本文件。

HTTP 协议中的规则,都是通过在请求头和响应头中写入输入来实现,Cookie 也是这样的。

服务端通过 Set-Cookie 这个响应头来向客户端中写入 Cookie 信息,而客户端读取 Set-Cookie
这个响应头中的信息存储起来,在下次请求的时候取出来,再通过 Cookie 这个请求头,将 Cookie 的数据传输给服务端。

再看一个浏览器中,Cookie 使用的实例。

在响应头(Response Header)中,使用 Set-Cookie 传递不同的 Cookie 数据,多个数据可以分开成多个 Set-Cookie 头。

在请求头中(Request Header)中,使用 Cookie 这个请求头传递 Cookie 数据,不同的数据通过 ;分割。

三、Cookie 的细节

到这里,我想你应该弄清楚了 cookie 的整个执行流程,接下来我们再来探究一些 cookie 的细节。

cookie 其实都是存储在客户端,通常我们说 cookie 对应的客户端,就是在说浏览器。

对于 cookie,我们可以简单的将 cookie 分为两类:

  • 会话 cookie。

  • 持久 cookie。

会话 cookie 是一种临时的 cookie,用于存储一些临时的信息,存储在内存中,会话 cookie 在用户退出浏览器的时候,会被清空删除。而持久
cookie 的生存周期会更长久一些,被存储在磁盘上,浏览器重启后它们依然存在,但是他们会有一个过期的时间,只在此时间之后会被置为失效。

会话 cookie 和持久 cookie 之间唯一的区别就是它们的过期时间,只要是设置了过期时间的 cookie 就是持久 cookie,反之则是会话
cookie。

仔细看前面的流程图中,有一个 domain 的字段是用于标识当前 Cookie 支持的域名的,而想要设置过期时间,可以使用 Expires 或者 Max-
Age 参数进行设置,有点类似我们前面讲 HTTP 缓存的参数。

到现在我们已经介绍了两个 Cookie 配置的信息,Domain 和 Expires/Max-Age,分别用来配置域名和过期策略。

这些都很好理解,毕竟浏览器是开放的,它会访问很多不同的网址,如果每个请求都将所有的 Cookie 信息都传递过去,基本上是不现实的。而这些配置参数,就是对
Cookie 增加一些附加的设置,进行一些简单的限制和过滤,在减少传输量的同时也保证了安全。

Domain 这个参数可以限制只在此域名下的请求,才传递该 Cookie,其他的不传递。

Cookie 其实还支持其他的一些参数配置,打开 Chrome 的调试模式,在 Application 中就可以看到当前页面的 Cookie 信息。

下面以一篇微信文章页面所存储的 Cookie 为例。

这个表中,就是当前存储的所有 Cookie 信息,而表头,则是 Chrome 支持的 Cookie 信息。

下面我们分别来介绍它们。

  • Name:Value :Cookie 存储的数据就是一个 Key-Value 的键值对,所以这两个参数没什么争议,就是数据的 Key 和 Value。

  • Domain:Cookie 的域,限制请求头传输的域。

  • Path:域中与 Cookie 相关的路径前缀。

  • Expires/Max-Age:过期时间或者超时间隔。

  • http:此属性为 True,表示只会在 HTTP 请求头中携带此 Cookie 信息,而无法通过 document.cookie 来访问此 Cookie。

  • Secure:安全,是否只有在使用 SSL 连接时才发送这个 Cookie。

其实都很好理解,就不展开讲解了。

3.3 Set-Cookie2 和 Cookie2

有些资料里会提到 Set-Cookie2 和 Cookie2 ,这些都是历史遗留问题,当初想对 Cookie
再进行一些功能上的扩展,但并未得到广泛的实施,现在已经弃用了。

大家了解一下即可,有兴趣可以参考 RFC 6265。

RFC 6265:

https://tools.ietf.org/html/rfc6265

大部分时候我们聊到 Cookie 都在说的是服务器和浏览器进行通信时候,而不同的浏览器对 Cookie 存储的限制是不一样的。例如:单个域名可存储的
Cookie 数量、Cookie 大小等。

我简单找了一些资料,来说明不同浏览器对 Cookie 的支持情况。

这些数据我没有验证过,但是也能说明不同浏览器对 Cookie 的支持情况。在进行页面 Cookie 操作的时候,应该尽量保证 Cookie 的个数小于 20
个,总大小小于 4KB,这是一个安全且保险的范围。

四、Cookie的查缺补漏

前面配置 Cookie 参数的时候,有两个参数:http 和 secure 属性,它们就在一定程度上保证了安全。

  1. http 属性

设置了 http 属性,标识它是一个 “HttpOnly” 的,那么通过一些脚本程序(例如 JS的 document.cookie)将无法读取到这个
Cookie 信息,它只会出现在请求的报文头内。

  1. secure 属性

secure 属性强制该 Cookie 只有在 SSL 的环境下才会想服务器传输,相对也保证了传输的安全。

Cookie 本身是不支持跨域的,一定程度也保证了 Cookie 的安全,如果非要跨域其实作为前端基本上能做的很少,大部分都需要服务端的二次配合。

例如:nginx 反向代理、Jsonp、nodejs 的 superagent、iframe 等方法。

有兴趣再单独了解就好了。

五、Cookie 小结

HTTP 中的 Cookie 知识点,基本上都已经讲解清楚了,我们再次总结一下关键知识点。

  1. Cookie 主要是为了解决 HTTP 协议无状态的问题。

  2. 服务端通过 Set-Cookie 响应头来向客户端设置 Cookie。

  3. 客户端通过 Cookie 请求头向服务端发送之前存储的 Cookie 数据。

  4. Cookie 依据过期时间进行区分,将类型分为:临时 Cookie 和 持久 Cookie。

  5. Cookie 可以通过配置不同的参数,进行限制,例如过期时间、支持的域名、是否安全(secure)等。

  6. Cookie 不支持跨域,跨域还需要其他的方式绕开来实现。

  7. Cookie 只能做到相对的安全,任何事情没有绝对的安全。

参考:

移动端网络优化

一个网络请求可以简单分为连接服务器 -> 获取数据两个部分。
其中连接服务器前还包括 DNS 解析的过程;获取数据后可能会对数据进行缓存。

一、连接服务器优化策略

1. 不用域名,用 IP 直连
省去 DNS 解析过程,DNS 全名 Domain Name System,解析意指根据域名得到其对应的 IP 地址。 如
http://www.codekk.com 的域名解析结果就是 104.236.147.76。

首次域名解析一般需要几百毫秒,可通过直接向 IP 而非域名请求,节省掉这部分时间,同时可以预防域名劫持等带来的风险。

当然为了安全和扩展考虑,这个 IP 可能是一个动态更新的 IP 列表,并在 IP 不可用情况下通过域名访问。

2. 服务器合理部署
服务器多运营商多地部署,一般至少含三大运营商、南中北三地部署。

配合上面说到的动态 IP 列表,支持优先级,每次根据地域、网络类型等选择最优的服务器 IP 进行连接。

对于服务器端还可以调优服务器的 TCP 拥塞窗口大小、重传超时时间(RTO)、最大传输单元(MTU)等。

二、获取数据优化策略

1. 连接复用
节省连接建立时间,如开启 keep-alive。

Http 1.1 默认启动了 keep-alive。对于 Android 来说默认情况下 HttpURLConnection 和 HttpClient
都开启了 keep-alive。只是 2.2 之前 HttpURLConnection 存在影响连接池的 Bug,具体可见:[Android
HttpURLConnection 及 HttpClient 选择](http://www.trinea.cn/android/android-http-
api-compare/)

2. 请求合并
即将多个请求合并为一个进行请求,比较常见的就是网页中的 CSS Image Sprites。 如果某个页面内请求过多,也可以考虑做一定的请求合并。

3. 减小请求数据大小
(1) 对于 POST 请求,Body 可以做 Gzip 压缩,如日志。

(2) 对请求头进行压缩
这个 Http 1.1 不支持,SPDY 及 Http 2.0 支持。 Http 1.1 可以通过服务端对前一个请求的请求头进行缓存,后面相同请求头用
md5 之类的 id 来表示即可。

4. CDN 缓存静态资源
缓存常见的图片、JS、CSS 等静态资源。

5. 减小返回数据大小
(1) 压缩
一般 API 数据使用 Gzip 压缩,下图是之前测试的 Gzip 压缩前后对比图。

(2) 精简数据格式
如 JSON 代替 XML,WebP 代替其他图片格式。关注公众号 codekk,回复 20 查看关于 WebP 的介绍。

(3) 对于不同的设备不同网络返回不同的内容 如不同分辨率图片大小。

(4) 增量更新
需要数据更新时,可考虑增量更新。如常见的服务端进行 bsdiff,客户端进行 bspatch。

(5) 大文件下载
支持断点续传,并缓存 Http Resonse 的 ETag 标识,下次请求时带上,从而确定是否数据改变过,未改变则直接返回 304。

6. 数据缓存
缓存获取到的数据,在一定的有效时间内再次请求可以直接从缓存读取数据。

关于 Http 缓存规则 Grumoon 在 Volley
源码解析
最后杂谈中有详细介绍。

三、其他优化手段

这类优化方式在性能优化系列总篇中已经有过完整介绍
1. 预取
包括预连接、预取数据。

2. 分优先级、延迟部分请求
将不重要的请求延迟,这样既可以削峰减少并发、又可以和后面类似的请求做合并。

3. 多连接
对于较大文件,如大图片、文件下载可考虑多连接。 需要控制请求的最大并发量,毕竟移动端网络受限。

四、监控

优化需要通过数据对比才能看出效果,所以监控系统必不可少,通过前后端的数据监控确定调优效果。

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×